Due: 12-Jan-2013.

1. At what values of x is the following function g differentiable?

$$
g(x)= \begin{cases}2 x & \text { if } x \leq 0 \\ 2 x-x^{2} & \text { if } 0<x<2 \\ 2-x & \text { if } x \geq 2\end{cases}
$$

2. Suppose that f and g are functions whose graphs are as follows:

Let:

$$
u(x)=f(g(x)), \quad v(x)=g(f(x)), \quad w(x)=g(g(x)) .
$$

Find each derivative, if it exists. If it does not exist, explain briefly why.
(i) $u^{\prime}(1)$
(ii) $v^{\prime}(1)$
(iii) $w^{\prime}(1)$.
3. The functions f and g are differentiable everywhere, with the following values known:

x	-2	-1	0	1	2
$f(x)$	1	-4	-6	1	-2
$f^{\prime}(x)$	2	-5	1	3	5
$g(x)$	-1	1	3	6	10
$g^{\prime}(x)$	-5	-2	1	3	5

Find (i) $\left.\frac{d}{d x}(f(x)+x g(x))\right|_{x=1}$
(ii) $\left.\frac{d}{d x}\left(\ln \left[(f(x))^{2}+1\right]\right)\right|_{x=0}$
(iii) $\left.\frac{d}{d x}\left(\frac{x^{2} f(x)}{g(x)}\right)\right|_{x=2}$.
4. Find an equation of the tangent line to the curve at the given point.
(i) $x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}$ at $\left(0, \frac{1}{2}\right)$.
(ii) $y^{2}\left(y^{2}-4\right)=x^{2}\left(x^{2}-5\right)$ at $(0,-2)$.
5. A balloon is rising at a constant speed of $5 \mathrm{ft} / \mathrm{sec}$. A boy is cycling along a straight road at a speed of $15 \mathrm{ft} / \mathrm{sec}$. When he passes under the balloon, it is 45 ft above him. How fast is the distance between the boy and the balloon increasing 3 sec later?
6. A container in the shape of an inverted cone has height 16 cm and radius 5 cm at the top. It is partially filled with liquid that oozes through the sides at a rate proportional to the area of the container that is in contact with the liquid. If we pour the liquid into the container at a rate of $2 \mathrm{~cm}^{3} / \mathrm{min}$, then the height of the liquid decreases at a rate of $0.3 \mathrm{~cm} / \mathrm{min}$ when the height is 10 cm .
If we want to keep the liquid at a constant height of 10 cm , at what rate should we pour the liquid into the container?

