Mathematical Induction

Proof by mathematical induction

A commonly-used trick in mathematical proofs is "proof by mathematical induction". It is mainly used for proving that a statement involving $n \in \mathbb{N}$ is true for all n.

Example: Notice the following pattern:

$$
\begin{gathered}
1=1^{2} \\
1+3=2^{2} \\
1+3+5=3^{2} \\
1+3+5+7=4^{2}
\end{gathered}
$$

We guess that the general pattern holds i.e.

$$
1+3+5+\cdots+(2 n-1)=n^{2} \text { for any } n \in \mathbb{N} .
$$

How to prove it? We can use mathematical induction. The procedure is as follows:
Prove it is true for $n=1: 1=1^{2}$

Assume it is true for $n=k \in \mathbb{N}: 1+3+5+\cdots+(2 k-1)=k^{2}$

Need to show that it is true for $n=k+1$:

$$
1+3+5+\cdots+(2(k+1)-1)=(k+1)^{2}
$$

The following diagram explains why mathematical induction works:

Exercise:

Prove that $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(2 n+1)(n+1)}{6}$ for any $n \in \mathbb{N}$.

Prove it is true for $n=1$:

Assume it is true for $n=k \in \mathbb{N}$:

Need to show that it is true for $n=k+1$:

Functions

What is a function?

Definition: Let A and B be sets. A function f is a "rule" which assigns one object in B to each of the objects in A. In this case, we call A to be the domain of f and B to be the range of f. We denote all the information collectively by the symbol

$$
f: A \rightarrow B
$$

For any $x \in A$, we let $f(x)$ be the object in B assigned by f i.e. $f(x) \in B$.

Examples of functions:

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x)=0$ for any $x \in \mathbb{R}$. f is called the zero function. The domain and range of f are \mathbb{R}. More generally, if we define $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=k$ for any $x \in \mathbb{R}$, where k is a fixed real number, then f is called a constant function.
2. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $g(x)=x^{2}$ for all $x \in \mathbb{R}$. For example, $g(1)=1^{2}=1, g(2)=2^{2}=4$.
3. Let P be the set of all people in the world. We define the function $m: P \rightarrow P$ such that $m(p)=$ biological mother of p, for any $p \in P$.
4. Let T be the set of all triangles in the plane. We define the function $a: T \rightarrow \mathbb{R}$ such that $a(t)=$ the area of triangle t, for any $t \in T$. For example, if t is a right-angled triangle with sides 3,4 and 5 , then $a(t)=6$.
5. Let $h: \mathbb{N} \rightarrow \mathbb{Z}$ be a function such that $h(n)=\left\{\begin{array}{c}n, \text { if } n \text { is even } \\ n-1, \text { if } n \text { is odd }\end{array}\right.$ for any $n \in \mathbb{N}$. For example, $h(1)=1-1=0, h(2)=2, h(3)=3-1=2$.

Examples of non-functions:

1. Let T be the set of all triangles in the plane. We define $b:(0, \infty) \rightarrow T$ such that $b(x)=a$ triangle t whose area is x, for any $t \in(0, \infty)$. b is NOT a function because more than one triangle has the given area.
2. We define $s: \mathbb{R} \rightarrow \mathbb{R}$ such that $s(x)=\sqrt{x}$, for any $x \in \mathbb{R}$. s is NOT a function because \sqrt{x} is not a well-defined real number when $x<0$.

Remark: Various disciplines of mathematics correspond to the studies of different types of functions.

Trigonometric Functions

Unit circle in \mathbb{R}^{2}

Definition: Unit circle is a circle with radius 1 centered at the origin in \mathbb{R}^{2}.

Suppose (x, y) is the coordinates of any point on the unit circle. By Pythagoras Theorem, we have

$$
x^{2}+y^{2}=1 .
$$

(This equation holds even for negative values of x and y.)

Hence, the unit circle can be regarded as

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} .
$$

Radian of an angle

For any point on the unit circle, we can measure angle θ, as shown in the above figure, from the x-axis to the line joining the point and origin in anti-clockwise direction.

When measuring the size of an angle, we usually use "degree" (e.g. 90° for right angle). However, for more advanced mathematics, another unit for angle, called "radian", is more commonly used.

Definition: Angle in radian is the arclength of the circular arc on the unit circle that subtends the angle.

Examples: $360^{\circ}=2 \pi \mathrm{rad}, 180^{\circ}=\pi \mathrm{rad}, 90^{\circ}=\frac{\pi}{2} \mathrm{rad}$.
Remark: The name of the unit "rad" is often omitted.

Theorem: Angle in degree $=$ angle in radian $\times \frac{180^{\circ}}{\pi}$.

Proof: By definition, $1 \mathrm{rad}=\frac{180^{\circ}}{\pi}$. So the result follows by proportion.

So far we assume that $\theta \in[0,2 \pi]$. However, we can define angles greater than 2π or smaller than 0 as follows:

Consider $\theta=\frac{7 \pi}{3}$. Imagine a point P travels on the unit circle by distance $\frac{7 \pi}{3}$ from $(1,0)$ in anticlockwise direction. Then θ is the angle between the x-axis and the line joining the origin and the point P in its final position i.e. θ is the same as $\frac{\pi}{3}$.

For negative angle $\theta=-\frac{\pi}{3}$, the definition is similar except that now the point P travels in clockwise direction i.e. θ is the same as $\frac{5 \pi}{3}$.

Sine and cosine functions

Now we define two very important functions:
Definition: $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ functions such that

$$
\begin{aligned}
& f(\theta)=x \\
& g(\theta)=y
\end{aligned}
$$

for any $\theta \in \mathbb{R}$, where (x, y) is the point defined on the unit circle as shown in the figure. g is called
 the sine function and f is called the cosine function.

Notation: $g(\theta)=\sin (\theta)$ and $f(\theta)=\cos (\theta)$.
Exercise: Fill the following table:

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$
$\sin (\theta)$								
$\cos (\theta)$								

